Chapter 17
Advanced File System

RAID Storage System

* Redundant Array of Inexpensive Disks

- Combine multiple small, inexpensive disk drives
to perform faster than a single physical disk

- Appear to the computer as a single virtual drive

- Support fault-tolerance by redundantly storing
information in various ways

RAID Types

Many types of array architectures, RAID 1 ~ 6
- Different disk fault-tolerance
- Different trade-offs in features and performance

A non-redundant array of disk drives is often
referred to as RAID 0
Only RAID O, 1, 3 and 5 are commonly used

- RAID 2 and 4 do not offer any significant advantages over
these other types

Certain combination is possible (10, 35 etc)
- RAID 10=RAID 1 +RAID 0

RAID Q - Striping

* No redundancy
- No fault tolerance

* High I/0 performance
- Parallel I/0

* Require a minimum of 2 drives to implement

MmN >
+ MOwWw —

RAID 1 - Mirroring

Provide good fault tolerance
- Works okay if one disk in a pair is down

One write = a physical write on each disk

One read = either read both or read the less busy

one
— Could double the read rate

Require a minimum of 2 drives to implement

s N>
s N>

RAID 3 - Parallel Array with Parity

Fast read/write

All disk arms are synchronized

Speed is limited by the slowest disk

Require a minimum of 3 drives to implement

MmN >
T MOwW ——
T ocoTUT —

Parity Check - Concept

An extra bit added to a byte to detect errors in storage or
transmission

Even (odd) parity means that the parity bit is set so that there
are an even (odd) number of one bits in the word, including
the parity bit

A single parity bit can only detect single bit errors since if an
even number of bits are wrong then the parity bit will not
change

It is not possible to tell which bit is wrong

L [|
11001100 00011001 11010101
01010011 11101010 10111001
11100010 00010111 ‘ 11110101

RAID 5 - Parity Checking

* For error detection, rather than full redundancy

* Each stripe unit has an extra parity stripe
- Parity stripes are distributed

* Require a minimum of 3 drives to implement

T TN

s mo w

: mMOT

Hardware vs. Software RAID

* Software RAID
- Run on the server's CPU
- Directly dependent on server CPU performance and load

- Occupies host system memory and CPU operation,
degrading server performance

* Hardware RAID
— Run on the RAID controller's CPU

- Does not occupy any host system memory. Is not
operating system dependent

- Host CPU can execute applications while the array
adapter's processor simultaneouslk/ executes array
functions: true hardware multi-tasking

Array Creation with mdadm

mdadm -h | --help
An array can be created at install time

Create partitions with type FD (using £disk, or other
partitioning software)

mdadm --create --help

-C --create /dev/mdX

-1 --level 0 | 1 | 4 | 5| 6 | 10
-n —--raid-devices # device [...]
-X --spare-devices # device [...]

mdadm -C /dev/md0 -1 5 -n 3 /dev/sddl /dev/sdel
/dev/sdfl -x 1 /dev/sdgl

Create filesystem

Software RAID Monitoring

e /etc/mdadm.conf

- identify which devices are RAID devices and to
which ARRAY a specific device belongs

* mdadm -F | --follow | --monitor

* /proc/mdstat

- real-time information and status about software
RAID arrays and devices

Software RAID Control and Display

°* mdadm --manage

- -f | --fail | --set-faulty
- -r | --remove
- -a -—-add

°* mdadm --grow
* mdadm --misc

- =0 --query

- =D --detail

- =0 --readonly
- =W —--readwrite

Failed Drive Replacement

* Fail, remove and add device with mdadm
- mdadm --manage /dev/md0 -f /dev/sdcl
- mdadm --manage /dev/md0 -r /dev/sdcl
- mdadm --manage /dev/md0 -a /dev/sdcl

LVM

* Logical Volume Management

- Allow a single volume distributed across more than
one physical device, to form a larger file system size
beyond device limitation.

- Flexibility on resizing or moving file system, reduce
down time cost on file system migration.

* All file systems except /boot/ can live on
LVM

- GRUB limitation
- GRUB2 can handle /boot on LVM

LVM Components

Physical Volume (PV)

- A single device, like partition, disk, etc.

Volume Group (VG)

— One or more PVs to form a VG

Physical Extend (PE)

- The basic consuming unit size divided from PVs while
joining a VG

Logical Volume (LV)

- Combination of PEs, can be used as block device

Logical Extend (LE)
- The PEs assigned to LV

Implementing LVM

* Create partitions
- fdisk /dev/device (Partition type 8E)
— partprobe

* Create Physical Volumes
- pvcreate /dev/device ...

* Create Volume Group
- vgcreate VGname /dev/device ...

Creating Logical Volumes

* Create Logical Volumes
- lvcreate -1 extents -n LVname VGname

— lvcreate -L size -n LVname VGname
* Create filesystems
- mkfs -t file system type device

* Mount the Logical Volume and test
- Edit /etc/fstab for persistence
- Run mount -a

Manipulating VGs & LVs

* Viewing
- pvdisplay, vgdisplay, lvdisplay, lvmdiskscan
- pvs, vgs, lvs
* Resizing
- vgreduce, vgextend, pvresize
- lvreduce, lvextend, lvresize
- resizelfs

* Moving PVs and VGs
— vgchange
* change attributes of a VG
- vgexport & vgimport
* move VGs between systems
— pvmove

* move PEs between PVs

LVM Implementation

* Physical Volume
— (Partition ID: x8e)

PV PV PV PV

LVM Implementation

* Volume Group
— One or more PVs

PV PV PV PV

VG

LVM Implementation

* Physical Extend
- Divided from VG

LVM Implementation

* Logical Volume
- Allocating PEs

LVM Implementation

* lvreduce
- Releasing PEs

LVM Implementation

* lvextent
- Allocate more free PEs

LVM Implementation

* vgextent
- Joining new PV to make more PEs

LVM Implementation

* pvmove
- Move PEs from one PV to other PVs

LVM Implementation

* vgreduce
- Detach a PV from VG

Device Mapper

In the Linux Kernel 2.6, the LVM2 is implemented in
terms of the device mapper

A simple block-level scheme for creating virtual
block devices and mapping their contents onto other
block devices

Allows its I/0 redirection services to be shared with
other volume managers (such as EVMS)

SAN multipathing provides redundancy and
increased throughput, device-mapper provides
vendor-neutral multipathing configuration

Device files are located in /dev/mapper

	投影片 1
	投影片 2
	投影片 3
	投影片 4
	投影片 5
	投影片 6
	投影片 7
	投影片 8
	投影片 9
	投影片 10
	投影片 11
	投影片 12
	投影片 13
	投影片 14
	投影片 15
	投影片 16
	投影片 17
	投影片 18
	投影片 19
	投影片 20
	投影片 21
	投影片 22
	投影片 23
	投影片 24
	投影片 25
	投影片 26
	投影片 27
	投影片 28

